Class 12 ISC Maths integration Important Questions Part-1
Integration is called the inverse process of differentiation. Instead of differentiating a function, we are given the function’s derivative and asked to find its primitive, i.e., the original function. Such a process is called integration or anti-differentiation. If the function’s derivative is known to us, is it possible to obtain the function. The answer to this question is yes. Integration ( or antiderivative of a function) makes it possible to obtain the original function.
Q1 ∫ e log e √x⁄xdx
Q2 9log3xdx
Q3 ∫ e3log x (x4)dx
Q4 ∫√ (1-sin 2x)dx
Q5 ∫ sin x + cos x⁄√ (1 + sin 2x)
Q6
∫ cos x - cos 2x⁄1 - cos x
Q7 ∫ (ex loga + e a logx - ea loga)dx
Q8 ∫ 2x⁄(2x + 1)2dx
Q9 ∫ (3x + 1)√ 2x - 1dx
Q10 ∫ x + 2⁄√ 3x + 1 dx
Q11 ∫ sin 7x sin x dx
Q12 ∫ (sin6x + cos6x)dx
Q13 ∫ 1 + cos 4x⁄cot x - tan xdx
Q14 ∫ 6x2 + 1⁄(4x3 + 2x - 5)3dx
Q15 ∫ 1 + cotx⁄x + log sin x dx
Q16 ∫ dx⁄x cos2 (1 + log x)
Q17 ∫ e-x cosec2 (2e-x + 5)dx
Q18 ∫ ex(1+x)⁄cos2(xex)dx
Q19 ∫ cosec x⁄log (tan x⁄2) dx
Q20 ∫ sin 2x⁄(a + b cos x)2dx
Q21 ∫ cot x log sin x dx
Q22 ∫ sec x log | sec x + tan x| dx
Q23 ∫ cos5x⁄sin x
Q24 ∫ cos3x e log sin xdx
Q25 ∫ cosec6 x dx
Q26 ∫ tan 8 x sec 4 x dx
Q27 ∫ dx⁄√ sin3 x sin (x + ∝) dx
Q28 ∫ sin x - x cos x⁄x (x + sin x) dx
Q29 ∫ dx⁄√x + ∛x
Q30 ∫ (x4 - x)1/4⁄x5 dx
Q31 If f’(x) = a sinx + b cos x, f’(0) = 4, f(0) = 4, f(0) =3 and f(π/2)=5, find f(x).
Q32 Find the anti derivatives of the following functions:(x+1)(x+logx)⁄2x
Q33 Find the anti derivatives of the following functions:3(cos-1x)2⁄√ 1-x2
Q34 Find all the primitives of the following functions:x-2⁄2x2-8x 5 dx
Q35 Find all the primitives of the following functions:cosec2x⁄2 + 3 cot x dx
Q36 Find all the primitives of the following functions:x -1 ⁄x (x - log x)
Reach Us
SERVICES
- ACADEMIC
- ON-LINE PREPARATION
- FOUNDATION & CRASH COURSES
CONTACT
B-54, Krishna Bhawan, Parag Narain Road,
Near Butler Palace Colony Lucknow
Contact:+918081967119
Add a comment