Q1 By using standard formulae, expand the following (1 to 9):
(i) (2x + 7y)2
(ii) (1/2 x + 2/3 y)2


solutions
Q2 (i) (3x + 1/2x)2
(ii) (3x2 y + 5z)2


solutions
Q3 (i) (3x – 1/2x)2
(ii) (1/2 x – 3/2 y)2


solutions
Q4 . (i) (x + 3) (x + 5)
(ii) (x + 3) (x – 5)
(iii) (x – 7) (x + 9)
(iv) (x – 2y) (x – 3y)


solutions
Q5 (i) (x – 2y – z)2
(ii) (2x – 3y + 4z)2


solutions
Q6 (i) (2x + 3/x – 1)2
(ii) (2/3 x – 3/2x – 1)2


solutions
Q7 (i) (x + 2)3
(ii) (2a + b)3


solutions
Q8 A man has certain notes of denominations Rs. 20 and Rs. 5 which amount to Rs. 380. If the number of notes of each kind is interchanged, they amount to Rs. 60 less as before. Find the number of notes of each denomination.

solutions
Q9 (i) (3x + 1/x)3
(ii) (2x – 1)3


solutions
Q10 Simplify the following (10 to 19):
(i) (a + b)2 + (a – b)2
(ii) (a + b)2 – (a – b)2


solutions
Q11 (i) (a + 1/a)2 + (a – 1/a)2
(ii) (a + 1/a)2 – (a – 1/a)2


solutions
Q12 (i) (3x – 1)2 – (3x – 2) (3x + 1)
(ii) (4x + 3y)2 – (4x – 3y)2 – 48xy


solutions
Q13 (i) (7p + 9q) (7p – 9q)
(ii) (2x – 3/x) (2x + 3/x)


solutions
Q14 (i) (2x – y + 3) (2x – y – 3)
(ii) (3x + y – 5) (3x – y – 5)


solutions
Q15 (i) (x + 2/x – 3) (x – 2/x – 3)
(ii) (5 – 2x) (5 + 2x) (25 + 4x2 )


solutions
Q16 (i) (x + 2y + 3) (x + 2y + 7)
(ii) (2x + y + 5) (2x + y – 9)
(iii) (x – 2y – 5) (x – 2y + 3)
(iv) (3x – 4y – 2) (3x – 4y – 6)


solutions
Q17 (i) (2p + 3q) (4p2 – 6pq + 9q2 )
(ii) (x + 1/x) (x2 - 1 + 1/x2 )


solutions
Q18 (i) (3p – 4q) (9p2 + 12pq + 16q2 )
(ii) (x – 3/x) (x2 + 3 + 9/x2 )


solutions
Q19 (2x + 3y + 4z) (4x2 + 9y2 + 16z2 – 6xy – 12yz – 8zx).

solutions
Q20 Find the product of the following:
(i) (x + 1) (x + 2) (x + 3)
(ii) (x – 2) (x – 3) (x + 4)


solutions
Q21 Find the coefficient of x2 and x in the product of (x – 3) (x + 7) (x – 4).

solutions
Q22 If a2 + 4a + x = (a + 2)2 , find the value of x.

solutions
Q23 Use (a + b)2 = a2 + 2ab + b2 to evaluate the following:
(i) (101)2
(ii) (1003)2
(iii) (10.2)2


solutions
Q24 Use (a – b)2 = a2 – 2ab – b 2 to evaluate the following:
(i) (99)2
(ii) (997)2
(iii) (9.8)2


solutions
Q25 By using suitable identities, evaluate the following:
(i) (103)3
(ii) (99)3
(iii) (10.1)3


solutions
Q26 If 2a – b + c = 0, prove that 4a2 – b 2 + c2 + 4ac = 0.

solutions
Q27 If a + b + 2c = 0, prove that a3 + b3 + 8c3 = 6abc.

solutions
Q28 If a + b + c = 0, then find the value of a2 /bc + b2 /ca + c2 /ab

solutions
Q29 If x + y = 4, then find the value of x3 + y3 + 12xy – 64.

solutions
Q30 Without actually calculating the cubes, find the values of:
(i) (27)3 + (-17)3 + (-10)3
(ii) (-28)3 + (15)3 + (13)3


solutions
Q31 Using suitable identity, find the value of:


solutions