Class 12 CBSE Inverse Trigonometric Functions Important Questions
Inverse Trigonometric Functions for Class 12 includes the major concepts related to the inverse of trigonometric functions, which will help the students score good marks in their examinations. The inverse trigonometric functions play an essential role in calculus, for they serve to define many integrals. The concepts of inverse trigonometric functions are also used in science and engineering.
class 12 CBSE Inverse Trignometric Functions ImportantQuestions
Inverse Trigonometric Functions ImportantQues
Q1
cot-1
(-
1
/
√3
)
Solution
![](/class12iscimp/class12ITF/1.jpg)
Q2
sec-1
(-
2
/
√3
)
Solution
![](/class12iscimp/class12ITF/2.jpg)
Q3
sin-1(-1)
Solution
![](/class12iscimp/class12ITF/3.jpg)
Q4
cos-1
(cos
4π
/
3
)
Solution
![](/class12iscimp/class12ITF/4.jpg)
![](/class12iscimp/class12ITF/4-1.jpg)
Q5
sin-1
(sin
2π
/
3
)
Solution
![](/class12iscimp/class12ITF/5.jpg)
Q6
tan-1
(tan
3π
/
4
)
Solution
![](/class12iscimp/class12ITF/6.jpg)
![](/class12iscimp/class12ITF/6-1.jpg)
Q7
tan-1
(tan
5π
/
6
) ≠
5π
/
6
, What is its value
Solution
![](/class12iscimp/class12ITF/7.jpg)
Q8
sin-1
(sin
5π
/
3
) ≠
5π
/
3
, What is its value
Solution
![](/class12iscimp/class12ITF/8.jpg)
Q9
Find the domain of sin-1 ( 1 - x)
Solution
![](/class12iscimp/class12ITF/9.jpg)
Q10
Find the domain of sec-1 (2x - 3)
Solution
![](/class12iscimp/class12ITF/10.jpg)
Q11
sin
(2 sin -1
3
/
5
)
Solution
![](/class12iscimp/class12ITF/11.jpg)
![](/class12iscimp/class12ITF/11-1.jpg)
Q12
sin
(2 cos -1(-
3
/
5
))
Solution
![](/class12iscimp/class12ITF/12.jpg)
Q13
sin
(2 cot -1(-
5
/
12
))
Solution
![](/class12iscimp/class12ITF/13.jpg)
![](/class12iscimp/class12ITF/13-1.jpg)
Q14
tan-1
(tan
5π
/
6
) + cos-1
(cos
13π
/
6
)
Solution
![](/class12iscimp/class12ITF/14.jpg)
Q15
tan-1
(-
1
/
√3
) + cot-1
(-
1
/
√3
) + tan-1
(sin ( -
π
/
2
))
Solution
![](/class12iscimp/class12ITF/15.jpg)
Q16
Write the following in the simplest form :
cot-1 (√1 + x2 - x) Solution
cot-1 (√1 + x2 - x) Solution
![](/class12iscimp/class12ITF/16.jpg)
![](/class12iscimp/class12ITF/16-1.jpg)
Q17
Write the following in the simplest form :
tan-1 (
tan-1 (
3 a2x - x3
/
a3 - 3ax2
)
Solution
![](/class12iscimp/class12ITF/17.jpg)
Q18
Find the value of :
tan-1 (
tan-1 (
x
/
y
) - tan-1
(
x-y
/
x + y
)
Solution
![](/class12iscimp/class12ITF/18.jpg)
Q19
cos-1
(
3
/
5
cosx +
4
/
5
sinx)
Solution
![](/class12iscimp/class12ITF/19.jpg)
Q20
Prove that :
cos (tan-1 ( sin (cot-1))) = √
cos (tan-1 ( sin (cot-1))) = √
1 + x2
/
2 + x2
Solution
![](/class12iscimp/class12ITF/20.jpg)
![](/class12iscimp/class12ITF/20-1.jpg)
![](/class12iscimp/class12ITF/20-2.jpg)
Q21
Prove that cot-1 7 + cot-1 8 + cot-1 18 = cot-1 3
Solution
![](/class12iscimp/class12ITF/21.jpg)
![](/class12iscimp/class12ITF/21-1.jpg)
Q22
Prove that tan-1 1 + tan-1 2 + tan-1 3 = π
Solution
![](/class12iscimp/class12ITF/22.jpg)
Q23
Prove that : 4(cot-1 3 + cosec-1 √) = π
Solution
![](/class12iscimp/class12ITF/23.jpg)
![](/class12iscimp/class12ITF/23-1.jpg)
Q24
Prove the following :
tan-1
tan-1
1
/
4
+ tan-1
2
/
9
= cos-1
2
/
√5
Solution
![](/class12iscimp/class12ITF/24.jpg)
Q25
Prove the following :
tan-1
tan-1
1
/
4
+ tan-1
2
/
9
=
1
/
2
sin-1
4
/
5
Solution
![](/class12iscimp/class12ITF/25.jpg)
Q26
If sin-1x + sin-1 y + sin-1 z = π then prove that :
(i) x2 - y2 - z2 + 2yz √ 1 - x2 = 0
(ii) x4 + y4 + z4 + 4x2 y2 z2 = 2 (x2 y2 + y2 z2 + z2 x2) Solution
(i) x2 - y2 - z2 + 2yz √ 1 - x2 = 0
(ii) x4 + y4 + z4 + 4x2 y2 z2 = 2 (x2 y2 + y2 z2 + z2 x2) Solution
![](/class12iscimp/class12ITF/26.jpg)
![](/class12iscimp/class12ITF/26-1.jpg)
![](/class12iscimp/class12ITF/27.jpg)
Q27
Evaluate :
sin-1
( sin(10))
Solution
![](/class12iscimp/class12ITF/28.jpg)
Q28
Evaluate :
tan-1
(tan(-6))
Solution
![](/class12iscimp/class12ITF/29.jpg)
Q29
cos-1
(cos(-
5π
/
6
)) ≠
- π
/
6
, What is its value
Solution
![](/class12iscimp/class12ITF/7-1.jpg)
![](img/NEWLOGO1.png)
Add a comment