Class 12 ISC Maths Chapter Determinants Exercise 4.2

Explore our extensive collection of questions on the topic of "Determinants," designed to help you understand and apply this fundamental concept in linear algebra. Our question bank covers key topics such as properties of determinants, cofactor expansion, minors, applications in solving systems of linear equations, and finding the inverse of matrices. These practice questions are perfect for students aiming to build a strong foundation in determinants and excel in exams. Whether you're revising concepts or looking to enhance your problem-solving skills, our comprehensive collection provides the ideal resource for mastering "Determinants."

class 12 Determinants exercise4-1

Select Exercise

Determinants  
Q1 Show that |A| = |B|, where
A=
1 -3 2
2 3 -1
0 5 -4
and B=
1 2 0
-3 3 5
2 -1 -4


View Solution  

Q2 Without expanding, find the value of :
a+b 2a+b 3a+b
2a+b 3a+b 4a+b
4a+b 5a+b 6a+b


View Solution  

Q3 Without expanding, find the values of

(i)
102 18 36
1 3 4
17 3 6


View Solution  

(ii)
2 7 65
3 8 75
5 9 86


View Solution  

Q4 Without expanding, find the values of

(i)
x a x+a
y b y+b
z c z+c


View Solution  

(ii)
a b c
a+2x b+2y c+2z
x y z


View Solution  

Q5 Without expanding, find the values of

(i)
a-b b-c c-a
x-y y-z z-x
p-q q-r r-p


View Solution  

(ii)
1 bc a(b+c)
1 ca b(c+a)
1 ab c(a+b)


View Solution  

Q6(i) If A is a square matrix of order 2 and |A| = -5, find the value of |3A|

View Solution  

Q6(ii) If A is a square matrix of order 3 and |A| = 4, find the value of |2A|

View Solution  

Q6(iii) If A is a square matrix of order 3 and |A| = 5, find the value of |3A|

View Solution  

Q6(iv) If A is a square matrix of order 3 and |A| = -2, find the value of |-5A|

View Solution  

Q6(v) If A is a matrix of order 3x3 and its determinant is 4, then find |3A|

View Solution  

Q6(vi) If A is a 3x3 matrix and |3A|=K|A|, then write the value of k

View Solution  

Q7 If
A =
4 3
2 5
and B=
-1 1
3 6


,then find the value of |AB|

View Solution  

Q8 Using the properties of determinants,solve the following equation for x:
x+a x x
x x+a x
x x x+a
=0

View Solution  

Q9 Show that one root of the equation
x+a b c
b x+c a
c a x+b
=0

is -(a+b+c)

View Solution  

Q10(i) Without expanding ,prove that
a b c
x y z
p q r
=
x y z
p q r
a b c
=
y b q
x a p
z c r


View Solution  

Q10(ii) Without expanding ,prove that
a a2 bc
b b2 ca
c c2 ab
=
1 a2 a3
1 b2 b3
1 c2 c3


View Solution  

Q11 Use properties of determinants to solve for x:

(i)
x+a b c
c x+b a
a b x+c
= 0

View Solution  

(ii)
3-x -1 1
-1 5-x -1
1 -1 3-x
= 0

View Solution  

Q12(i) If s=a + b + c, then prove that
s+c a b
c s+a b
c a s+b
= 2s3

View Solution  

Q12(ii) If a, b and c are in A.P ,then find the value of
2y+4 5y+7 8y+a
3y+5 6y+8 9y+b
4y+6 7y+9 10y+c


View Solution  

Q12(iii) Using the properties of determinant, prove that
x-3 x-4 x-α
x-2 x-3 x-β
x-1 x-2 x-γ;
= 0

,where α,β and γ are in A.P

View Solution  

Q13 Using the properties of determinant, prove that
a+b b+c c+a
b+c c+a a+b
c+a a+b b+c
= 2
a b c
b c a
c a b


View Solution  

Using the properties of determinant, prove the following (14 to 27)identities:

Q14(i)
1+a b c
a 1+b c
a b 1+c
= 1+a+b+c

View Solution  

Q14(ii)
a+x y z
x a+y z
x y a+z


= a2(a+x+y+z)

View Solution  

Q14(iii)
y+k y y
y y+k y
y y y+k
= k2(3y+k)

View Solution  

Q14(iv)
x+4 2x 2x
2x x+4 2x
2x 2x x+4


= (5x+4)(4-x)2

View Solution  

Q15
a+b+nc na-a nb-b
nc-c b+c+na nb-b
nc-c na-a c+a+nb


= n(a+b+c)3

View Solution  

Q16
1 x yz
1 y zx
1 z xy
=
1 x x2
1 y y2
1 z z2


= (x-y)(y-z)(z-x)

View Solution  

Q17
x y z
x2 y2 z2
x3 y3 z3
= xyz(x-y)(y-z)(z-x)

View Solution  

Q18(i)
x y 1
α x 1
α β 1
= (x-α) (x-β)

View Solution  

Q18(ii)
1 x y
1 x+y y
1 x x+y
= xy

View Solution  

Q18(iii)
y+z x y
z+x z x
x+y y z
= (x+y+z) (x-z)2

View Solution  

Q19
-a2 ab ac
ab -b2 bc
ca bc -c2
= 4a2b2c2

View Solution  

Q20
1 α α2+βγ
1 β β2+γα
1 γ γ2+αβ
= 2(α-β)(β-γ) (γ-α)

View Solution  

Q21
a2+1 ab ac
ab b2+1 bc
ac bc c2+1
=
a2+1 b2 c2
a2 b2+1 c2
a2 b2 c2+1
= 1+a2+b2+c2

View Solution  

Q22
a b c
a2 b2 c2
bc ca ab
=
1 a2 a3
1 b2 b3
1 c2 c3


=(a-b)(b-c)(c-a)(ab+bc+ca)

View Solution  

Q23
a2 a2-(b-c)2 bc
b2 b2-(c-a)2 ca
c2 c2-(a-b)2 ab


=(a-b)(b-c)(c-a)(a+b+c)(a2+b2+c2)

View Solution  

Q24
(b+c)2 a2 bc
(c+a)2 b2 ca
(a+b)2 c2 ab


=(a-b)(b-c)(c-a)(a+b+c)(a2+b2+c2)

View Solution  

Q25(i)
a+b+c -c -b
-c a+b+c -a
-b -a a+b+c


= 2(a+b)(b+c)(c+a)

View Solution  

Q25(ii)
y+z x+y x
z+x y+z y
x+y z+x z


= x3+y3+z3-3xyz

View Solution  

Q26
a b-c c-b
a-c b c-a
a-b b-a c


= (a+b-c)(b+c-a)(c+a-b)

View Solution  

Q27
1 bc+ad b2c2+a2d2
1 ca+bd c2a2+b2d2
1 ab+cd a2b2+c2d


= (a-b)(a-c)(a-d)(b-c)(b-d)(c-d)



View Solution  

Q28 Without expanding any of the determinants given below, prove that
a2 b2 c2
(a+1)2 (b+1)2 (c+1)2
(a-1)2 (b-1)2 (c-1)2
=4
a2 b2 c2
a b c
1 1 1


View Solution  

Q29 Using properties of determinants, solve the following equations for x:

(i)
3x-8 3 3
3 3x-8 3
3 3 3x-8
=0

View Solution  

(ii)
x+1 3 5
2 x+2 5
2 3 x+4
=0

View Solution  

(iii)
x -6 -1
2 -3x x-3
-3 2x x+2
=0

View Solution  

(iv)
15-2x 11 10
11-3x 17 16
7-x 14 13
=0

View Solution  

Q30 If a, b, c are all different and
a a3 a4-1
b b3 b4-1
c c3 c4-1
=0

, prove that abc(ab+bc+ca)=a+b+c

View Solution  

Q31 In a triangle ABC, if
1 1 1
1+cosA 1+cosB 1+cosC
cosA+cos2A cosB+cos2B cosC+cos2C


=0,then prove that ABC is an isosceles triangle

View Solution  

Add a comment

Reach Us

SERVICES

  • ACADEMIC
  • ON-LINE PREPARATION
  • FOUNDATION & CRASH COURSES

CONTACT

B-54, Krishna Bhawan, Parag Narain Road, Near Butler Palace Colony Lucknow
Contact:+918081967119